

A Description of Improvement in Running Time
Strategies for a 3-D Finite Element Seepage/
Groundwater Model using High Performance
Computing (HPC) Systems

Fred T. Tracy
US Army Engineer Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180
USA
tracyf@ex1.wes.army.mil.usa

Alex Carrillo
US Army Engineer Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180
USA
carrillo@bugs.wes.army.mil.usa

The running time of a 3-D finite element (FE) seepage/groundwater model written/modified
by the authors which approximates unsaturated flow by assuming unconfined flow with a
phreatic surface was significantly improved. This paper summarizes the improvements and
gives the resulting running times for the following 3-D problems: (1) regional groundwater
flow in the vicinity of a contaminant plume, (2) seepage near Cerrillos Dam in Puerto Rico,
and (3) a generic aquifer problem containing a river through the middle of the flow domain,
three wells, and a cut-off wall. The regional groundwater flow problem is poorly conditioned
because of the heterogeneous nature of the medium, the quality of the grid (extensively
modified by hand), and the type of finite elements used; whereas the other two problems are
well-conditioned. The grid for the Cerrillos Dam problem was generated by a small
FORTRAN program, and the grid for the generic aquifer problem was generated using the
joining of 16 structured subregions. These 3-D problems form a good variety of problem
types. The categories for improvement described are (1) a more efficient bandwidth
minimizer for the direct solvers, (2) an improved direct solver, (3) a more efficient use of
factorization, (4) the addition of a conjugate gradient method, and (5) improvements to
input/output (I/O). The results will be presented for various HPC systems.
1 Introduction

 There is significant research regarding the efficiency of different
computational techniques used in groundwater modeling and simulation.
These results, of course, vary with the number of phases, components, and
processes being modeled; the complexity of the site characterization; and the
sophistication of the hardware and software used. This paper adds additional
data to the discussion by providing the authors' experience in improving the
running time of a finite element (FE) code when used to model three real-
world problems using various high performance computing (HPC) systems.

2 Model used

 A 3-D FE seepage/groundwater model written by Tracy [1] which
approximates unsaturated flow by assuming unconfined flow with a phreatic
surface was used in this study. As the problems considered have unconfined
flow, an iterative solution is required to achieve a steady-state solution.

3 Description of problems

 Three problems were used to test the different improvements to the FE
program, and a brief description of each follows.

3.1 Regional groundwater flow near a plume

 The problem consists of partially confined and partially unconfined
groundwater flow in a region where pumping is being done to stop the
progress of a contaminant plume. The 2-D triangular mesh used as a starting
point to generate the 3-D grid is shown in Figure 1. The nodes with triangles
have heads specified as a boundary condition, and the nodes identified with
circles are wells where differing amounts of water are being extracted. The
immediate purpose of the computation is a calibration where the unknown
hydraulic conductivities are adjusted. A slurry trench has been installed in the
flow region to modify flow, and a zoom of the grid for this region is shown in
Figure 2. The slurry trench is identified by all the nodes along line segment
AB. An impervious wall such as a slurry trench is modeled by having
different nodes on one side of the wall as compared to the other side.
 There are two basic layers which are alluvium and bedrock. The hydraulic
conductivities, however, vary greatly within these two broad categories of
material. The 3-D grid was generated from the 2-D data and is shown in
Figure 3. The 3-D FE program was modified to have a layer specified for each
element and hydraulic conductivity specified at each node for that layer.
23,513 nodes and 38,795 elements were used in this problem.

Figure 1. 2-D FE grid

Figure 2. Zoomed area showing slurry trench

3.2 Cerrillos Dam

 This is a traditional 3-D study of seepage near Cerrillos Dam in Puerto
Rico, and an isometric view of the grid is shown in Figure 4. The flow is
unconfined, and both a small grid of 10,915 nodes and 3,469 elements and a
large grid of 87,572 nodes and 77,124 elements are used in the study.

3.3 Generic aquifer problem

 The problem consists of a part of an aquifer containing a river crossing
through the region with three partially penetrating wells and a cut-off wall.
The region with the two wells is highly anisotropic, and the region under the
river is a rather impervious clay. The region with the cut-off wall has soil
properties of a pervious sand. The FE grid as shown in Figure 5 was generated
using EAGLE written by Thompson [2] and contains 16 structured subregions.
 11,578 nodes and 9,855 elements were used in this study.

4 Computational improvements

 The regional groundwater flow problem is poorly conditioned because of
the heterogeneous nature of the medium, the quality of the grid (extensively
modified by hand), and the type of finite elements used; whereas the other two
problems are well-conditioned. The grid for the Cerrillos Dam problem was
generated by a small FORTRAN program, and the grid for the generic aquifer
problem was generated using a sophisticated grid generation program. These
3-D problems form a good variety of problem types (see Table 1 for more
detailed information). A driving factor in the development of the FE model
was portability. An out-of-core capability was also highly desirable due to
unpredictable memory sizes. Both factors limited the use of vendor-specific
math software libraries. A description of the improvements made is now
given.

4.1 Nonlinear iteration

The i'th nonlinear iteration to steady-state can be summarized as formulating
and solving the following set of Newton iteration equations:

[] { } { }

{ } { } { }
K Qi i i

i i

∆

∆

φ
φ φ

= −

= ++1 1φ
 (1)

where [K] is the stiffness matrix, {�1} is the change in total head or potential
vector, and {Q} is the residual flow vector. Because the solution is steady-
state, a significant savings can be achieved by only updating [K]i with respect
to changing boundary conditions, so this is what is done. {Q}i must, however,

Figure 3. 3-D grid

 Figure 4. Plan view of aquifer

 Figure 5. Plan view of grid

Table 1. Model information

 Plume

 Aquifer

 S
Cerrillos

 L
Cerrillos

 Nodes
 Elements
 Iterations
 Original global BW
 Original aver. local
BW
 New global BW
 New aver. local BW

 23,513
 38,796
 48
 883
 364
 482
 356

 11,578
 9,855
 5
 1,594
 1,075
 675
 436

 10,915
 8,469
 8
 502
 467
 383
 283

 87,572
 77,124
 9
 1,974
 1,855
 1,481
 1,092

be computed using the current values of the element stiffness matrices at each
iteration.

4.2 Solution process

 Improvements to the solution algorithm branched into two directions.
First, a more efficient block Cholesky factorization solver was developed and
implemented using a LAPACK [3] library subroutine as a template . Minor
modifications were made to take advantage of the smaller local bandwidth of
each block, and an out-of-core capability was built around the routine. For an
unchanging stiffness matrix between nonlinear iterations, re-use of the
factorization from the previous iteration greatly reduced the computations
required for some problems. Coupled with a more sophisticated bandwidth
minimization routine from Gibbs [4], significant time reductions were obtained
for the direct solution process. Table 1 gives bandwidth (BW) data for the
three problems.
 Secondly, a conjugate gradient solver developed by Kincaid [5] was added,
which further reduced memory requirements and eliminated the need for an
out-of-core solver. A conjugate gradient routine from the Cray Research, Inc.
Scientific Software Library (Scilib) was also tested.

4.3 Input/output (I/O)

 I/O was closely evaluated since it could easily account for a substantial
portion of the run time. First, the stiffness matrix was switched from a banded
storage format to a sparse matrix format, which allowed assembly and
boundary condition modifications to be completed in-core and eliminated
many of the inefficiencies associated with the out-of-core solver. The reduced
bandwidths also decreased the I/O requirements for the out-of-core solver,
making the use of faster disks more feasible. Finally, the iterative solver
eliminated the need for out-of-core I/O.

4.4 General improvements

 Enhanced vectorization and other improvements in coding were also
accomplished. Through effective use of arrays, redundant work was
eliminated, and several functions were transformed into level 3 BLAS routines
[6].

4.5 Results

 Table 2 shows the CPU times in seconds for the CRAY C90, CRAY YMP,
and SGI Power Challenge Array (PCA) in single processor mode.

4.6 Multi-tasking

 A fine-grained parallel version of the FE model has been created. Since the
restructured code relies heavily on vendor-tuned and multi-tasked BLAS
routines, by adding a few parallel directives, good parallel performance was
achieved for the large Cerrillos Dam problem on the CRAY architectures.
Using 16 dedicated processors on the CRAY C90, 8.83 Gflops were sustained,
reducing overall run time from 1380 sec to 132 sec. The other two problems
were too small to fully exploit the multi-tasking capabilities of the CRAY C90.
 Further work in developing a more coarse-grained parallel model using
domain decomposition and some of the more recently developed parallel
iterative methods could further improve the performance on both shared
memory and.

Table 2. Single processor CPU times (sec)

 Plume

 Aquifer

S

Cerrillos

 L
Cerrillos

 Original code - YMP

 12,548

 3,747

 517

 33,148

New direct solution

 CRAY C90
 CRAY YMP
 Silicon Graphics PCA

 74
 158
 372

 12
 29
 54

 18
 43
 78

 1,380
 3,890
 7,366

Public domain iterative solver

 CRAY C90
 CRAY YMP
 Silicon Graphics PCA

Non conv.
Non conv.
 8,226

 85
 130
 79

 60
 93
 56

 961
 1,497
 1,553

Cray Research, Inc. Scilib iterative solver

 CRAY C90
 CRAY YMP

 571
 879

 18
 27

 11
 17

 141
 217

distributed memory architectures

Acknowledgment

 This work was supported in part by a grant of HPC time from the DoD HPC
Major Shared Resource Center at the US Army Engineer Waterways
Experiment Station (WES). Other funding was received from the WES In-
house Laboratory Independent Research (ILIR) and Groundwater Modeling
programs. The use of specific vendor computer hardware and software in this
paper does not constitute an endorsement. The Chief of Engineers has
approved the publication of this paper.

Key words

 Groundwater modeling, finite element method, high performance
computing

References

1. Tracy, Fred T. (1991). Application of Finite Element, Grid Generation,
and

Scientific Visualization Techniques to 2-D and 3-D Seepage and
Groundwater Modeling. Technical Report ITL-91-3. US Army Engineer
Waterways Experiment Station, Vicksburg, MS.

2. Thompson, J. F. (1987). A Composite Grid Generation Code for General

3-D Region. American Institute of Aeronautics and Astronautics 25th
Aerospace Science Meeting. Reno, NV.

3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J.,

Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1990).
 LAPACK: A Portable Linear Algebra Library for High-Performance
Computers. Supercomputing '90, pp. 2-11. Los Alamitos, CA.

4. Gibbs, N. E., Poole, W. G., Jr., and Stockmeyer, P. K. (1976). An

Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix.
SIAM Journal of Numerical Analysis, 13 (2), pp. 235-251.

5. Kincaid, David R., Respess, John R., Young, David M., and Grimes, Roger

G. (1996). ITPACK 2C: A FORTRAN Package for Solving Large Sparse
Linear Systems by Adaptive Accelerated Iterative Methods. Center for

Numerical Analysis, University of Texas, Austin, TX.

6. Dongarra, J., Du Croz, J., Hammarling, S., and Duff, I. (1990). A Set of

Level 3 Basic Linear Algebra Subprograms. ACM Transactions of
Mathematical Software, 16(1), pp. 1-17.

