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The running time of a 3-D finite element (FE) seepage/groundwater model written/modified 
by the authors which approximates unsaturated flow by assuming unconfined flow with a 
phreatic surface was significantly improved.  This paper summarizes the improvements and 
gives the resulting running times for the following 3-D problems:  (1)  regional groundwater 
flow in the vicinity of a contaminant plume, (2) seepage near Cerrillos Dam in Puerto Rico, 
and (3) a generic aquifer problem containing a river through the middle of the flow  domain, 
three wells, and a cut-off wall.  The regional groundwater flow problem is poorly conditioned 
because of the heterogeneous nature of the medium, the quality of the grid (extensively 
modified by hand), and the type of finite elements used; whereas the other two problems are 
well-conditioned.  The grid for the Cerrillos Dam problem was generated by a small 
FORTRAN program, and the grid for the generic aquifer problem was generated  using  the 
joining of 16 structured subregions.  These 3-D problems form a good variety of problem 
types. The categories for improvement described are (1)  a more efficient bandwidth 
minimizer for the direct solvers, (2) an improved direct solver, (3) a more efficient use of 
factorization, (4) the addition of a conjugate gradient method, and (5) improvements to 
input/output (I/O).  The results will be presented for various HPC systems. 
1  Introduction 



 
     There is significant research regarding the efficiency of different 
computational techniques used in groundwater modeling and simulation.  
These results, of course, vary with the number of phases, components, and 
processes being modeled; the complexity of the site characterization; and the 
sophistication of the hardware and software used.  This paper adds additional 
data to the discussion by providing the authors' experience in improving the 
running time of a finite element (FE) code when used to model three real-
world problems using various high performance computing (HPC) systems. 
 
2  Model used 
 
      A 3-D FE seepage/groundwater model written by Tracy [1] which 
approximates unsaturated flow by assuming unconfined flow with a phreatic 
surface was used in this study.  As the problems considered have unconfined 
flow, an iterative solution is required to achieve a steady-state solution. 
 
3  Description of problems 
 
     Three problems were used to test the different improvements to the FE 
program, and a brief description of each follows. 
 
3.1  Regional groundwater flow near a plume 
 
     The problem consists of partially confined and partially unconfined 
groundwater flow in a region where pumping is being done to stop the 
progress of a contaminant plume.  The 2-D triangular mesh used as a starting 
point to generate the 3-D grid is shown in Figure 1.  The nodes with triangles 
have heads specified as a boundary condition, and the nodes identified with 
circles are wells where differing amounts of water are being extracted.  The 
immediate purpose of the computation is a calibration where the unknown 
hydraulic conductivities are adjusted.  A slurry trench has been installed in the 
flow region to modify flow, and a zoom of the grid for this region is shown in 
Figure 2.   The slurry trench is identified by all the nodes along line segment 
AB.  An impervious wall such as a slurry trench is modeled by having 
different nodes on one side of the wall as compared to the other side.  
     There are two basic layers which are alluvium and bedrock.  The hydraulic 
conductivities, however, vary greatly within these two broad categories of  
material.  The 3-D grid was generated from the 2-D data and is shown in 
Figure 3.  The 3-D FE program was modified to have a layer specified for each 
element and hydraulic conductivity specified at each node for that layer.  
23,513 nodes and 38,795 elements were used in this problem. 



 
Figure 1.  2-D FE grid 

 
 

 

 
Figure 2.  Zoomed area showing slurry trench  

3.2  Cerrillos Dam 



 
     This is a traditional 3-D study of seepage near Cerrillos Dam in Puerto 
Rico, and an isometric view of the grid is shown in Figure 4.  The flow is 
unconfined, and both a small grid of 10,915 nodes and 3,469 elements and a 
large grid of 87,572 nodes and 77,124 elements are used in the study. 
 
3.3  Generic aquifer problem 
 
     The problem consists of a part of an aquifer containing a river crossing 
through the region with three partially penetrating wells and a cut-off wall.  
The region with the two wells is highly anisotropic, and the region under the 
river is a rather impervious clay.  The region with the cut-off wall has soil 
properties of a pervious sand.  The FE grid as shown in Figure 5 was generated 
using EAGLE written by Thompson [2] and contains 16 structured subregions. 
 11,578 nodes and 9,855 elements were used in this study. 
 
4  Computational improvements 
 
     The regional groundwater flow problem is poorly conditioned because of 
the heterogeneous nature of the medium, the quality of the grid (extensively 
modified by hand), and the type of finite elements used; whereas the other two 
problems are well-conditioned.  The grid for the Cerrillos Dam problem was 
generated by a small FORTRAN program, and the grid for the generic aquifer 
problem was generated  using  a sophisticated grid generation program.  These 
3-D problems form a good variety of problem types (see Table 1 for more 
detailed information).  A driving factor in the development of the FE model 
was portability.  An out-of-core capability was also highly desirable due to 
unpredictable memory sizes.  Both factors limited the use of vendor-specific 
math software libraries.  A description of the improvements made is now 
given. 
 
4.1  Nonlinear iteration 
 
The i'th nonlinear iteration to steady-state can be summarized as formulating 
and solving the following set of Newton iteration equations: 
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where [K] is the stiffness matrix, {�1} is the change in total head or potential 
vector, and {Q} is the residual flow vector.  Because the solution is steady- 
state, a significant savings can be achieved by only updating [K]i  with respect  
to changing boundary conditions, so this is what is done. {Q}i  must, however, 



 
 

Figure 3.  3-D grid 
 
 
 
 

 
 
 Figure 4.  Plan view of aquifer 
 
 

 
 Figure 5.  Plan view of grid 
 



Table 1.  Model information 
 
 

 
 Plume 

 
 Aquifer 

 
 S 
Cerrillos  

 
 L 
Cerrillos 

 
 Nodes 
 Elements 
 Iterations 
 Original global BW 
 Original aver. local 
BW 
 New global BW 
 New aver. local BW 

 
 23,513 
 38,796 
 48 
 883 
 364 
 482 
 356 

 
 11,578 
 9,855 
 5 
 1,594 
 1,075 
 675 
 436 

 
 10,915 
 8,469 
 8 
 502 
 467 
 383 
 283 

 
 87,572 
 77,124 
 9 
 1,974 
 1,855 
 1,481 
 1,092 

 
be computed using the current values of the element stiffness matrices at each 
iteration. 
 
4.2  Solution process 
 
      Improvements to the solution algorithm branched into two directions.  
First, a more efficient block Cholesky factorization solver was developed and 
implemented using a LAPACK [3] library subroutine as a template .  Minor 
modifications were made to take advantage of the smaller local bandwidth of 
each block, and an out-of-core capability was built around the routine.  For an 
unchanging stiffness matrix between nonlinear iterations, re-use of the 
factorization from the previous iteration greatly reduced the computations 
required for some problems.  Coupled with a more sophisticated bandwidth 
minimization routine from Gibbs [4], significant time reductions were obtained 
for the direct solution process.  Table 1 gives bandwidth (BW) data for the 
three problems. 
      Secondly, a conjugate gradient solver developed by Kincaid [5] was added, 
which further reduced memory requirements and eliminated the need for an 
out-of-core solver.  A conjugate gradient routine from the Cray Research, Inc. 
Scientific Software Library (Scilib) was also tested. 
 
4.3  Input/output (I/O) 
 
        I/O was closely evaluated since it could easily account for a substantial 
portion of the run time.  First, the stiffness matrix was switched from a banded 
storage format to a sparse matrix format, which allowed assembly and 
boundary condition modifications to be completed in-core and eliminated 
many of the inefficiencies associated with the out-of-core solver.  The reduced 
bandwidths also decreased the I/O requirements for the out-of-core solver, 
making the use of faster disks more feasible.  Finally, the iterative solver 
eliminated the need for out-of-core I/O. 



 
4.4  General improvements 
 
     Enhanced vectorization and other improvements in coding were also 
accomplished.  Through effective use of arrays, redundant work was 
eliminated, and several functions were transformed into level 3 BLAS routines 
[6]. 
 
4.5  Results 
 
     Table 2 shows the CPU times in seconds for the CRAY C90, CRAY YMP, 
and SGI Power Challenge Array (PCA) in single processor mode.  
 
4.6 Multi-tasking 
 
     A fine-grained parallel version of the FE model has been created.  Since the 
restructured code relies heavily on vendor-tuned and multi-tasked BLAS 
routines, by adding a few parallel directives, good parallel performance was 
achieved for the large Cerrillos Dam problem on the CRAY architectures.  
Using 16 dedicated processors on the CRAY C90, 8.83 Gflops were sustained, 
reducing overall run time from 1380 sec to 132 sec.  The other two problems 
were too small to fully exploit the multi-tasking capabilities of the CRAY C90. 
 Further work in developing a more coarse-grained parallel model using 
domain decomposition and some of the more recently developed parallel 
iterative methods could further improve the performance on both shared 
memory and. 
 

 
Table 2.  Single processor CPU times (sec) 

 
 

 
 Plume 

 
 Aquifer 

 
S 

Cerrillos 

 
 L 
Cerrillos  

 
 Original code - YMP 

 
 12,548 

 
 3,747 

 
 517 

 
 33,148 

 
New direct solution 

 
 CRAY C90 
 CRAY YMP 
 Silicon Graphics PCA 

 
 74 
 158 
 372 

 
 12 
 29 
 54 

 
 18 
 43 
 78 

 
 1,380 
 3,890 
 7,366 

 
Public domain iterative solver 

 
 CRAY C90 
 CRAY YMP 
 Silicon Graphics PCA 

 
Non conv. 
Non conv. 
 8,226 

 
 85 
 130 
 79 

 
 60 
 93 
 56 

 
 961 
 1,497 
 1,553 

 



Cray Research, Inc. Scilib iterative solver 
 
 CRAY C90 
 CRAY YMP 

 
 571 
 879 

 
 18 
 27 

 
 11 
 17 

 
 141 
 217 

distributed memory architectures 
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