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Newton-Krylov-Schwarz methods solve nonlinear equations by using Newton's method

with a Schwarz domain decomposition preconditioned Krylov method to approximate the

Newton step. In this paper we discuss the design and implementation of Newton-Krylov-

Schwarz solvers in the context of the implicit temporal integration on an unstructured

three-dimensional mesh of the Navier-Stokes equations for modeling 
ow in a river bend.

1. INTRODUCTION

In this paper we discuss the design and implementation of a Newton-Krylov-Schwarz

solver for the implicit temporal integration on an unstructured three-dimensional spatial

mesh of time-dependent partial di�erential equations. The novel feature of this approach

is the formation of a coarse mesh problem using aggregation methods from algebraic

multigrid [14]. The solver was tested within the Adaptive Hydrology (ADH) Model, a

�nite element code being developed by the Army Corps of Engineers Waterways Experi-

ment Station (WES) that is designed to solve a variety of hydrology problems including

surface water 
ow.

�This research was supported in part by Army Research O�ce contract DAAD19-99-1-0186, US

Army contract DACA39-95-K-0098, National Science Foundation grant DMS-9700569, a Cray Research

Corporation Fellowship, and a Department of Education GAANN fellowship. Computing activity was

partially supported by an allocation from the North Carolina Supercomputing Center.



2

In [10] we will apply this approach to the solution of Richards' equation for groundwa-

ter 
ow in the unsaturated zone, and in [7] we discuss an application to surface water-

groundwater interaction. In this paper we report on the performance of the method in a

Navier-Stokes simulation.

The Navier-Stokes equations in terms of velocity u (x; t) and pressure p (x; t), can be

written as
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These equations are applicable within the domain 
 � R
3 with the following boundary

conditions:

u = û on �g

� = �̂ on �h (3)

u � n = h on �h:

The boundary of 
 is denoted as �, and n is the outward normal. �g and �h represent

non-overlapping subregions of � such that

� = �g [ �h:

In x 3 we give numerical results for a test case. These results show that our precondi-

tioners have good scalability and that our coarse grid formulation is performing well.

2. NEWTON-KRYLOV-SCHWARZ

The weak formulation of the Navier-Stokes equations as given in [1] leads to implicit

temporal integration. The discretization of the weak formulation leads to a system of

nonlinear equations that must be solved at each time step. These equations are solved

via Newton-Krylov-Schwarz (NKS) methods, which are described below.

NKS methods [11] use a Krylov subspace method to determine the Newton step s in

F
0 (uc) s = �F (uc)

where F 0 (uc) is the Jacobian at the current iteration. A Schwarz type preconditioner is

used to accelerate the performance of the Krylov solver. The Krylov method used in the

ADH Model is the Bi-CGStab method [13].
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Both one-level additive Schwarz [3] and two-level additive Schwarz preconditioners [3]

[4] are currently implemented in the ADH Model. Both of these preconditioners are

domain decomposition type preconditioners, which means that the original domain is

split into several subdomains, and the solutions of the original problem restricted to the

subdomains are combined to form the preconditioner for the original system. If we de�ne

a matrix Ri to be the restriction matrix for subdomain i so that Ri = [0 I 0], where I

is an ni� ni identity matrix and ni is the size of subdomain i, then the one-level additive

Schwarz preconditioner can be written as

M =
pX

i=1

R
T
i

�
RiAR

T
i

�
�1

Ri

where p is the number of subdomains.

The coarse mesh component of the preconditioner is formed by de�ning one aggregate

element per subdomain. The resulting coarse mesh basis function is constant except in the

elements shared between subdomains. The contribution of the subdomain to the coarse

matrix is computed locally and then communicated to all of the processors. Thus every

processor solves the coarse mesh problem. The subdomain solves are performed using a

pro�le solver [5] and the coarse grid problem is solved using a dense LU factorization. The

two-level additive Schwarz preconditioner is formed by adding the coarse mesh problem

to the one-level preconditioner, so that

M = R
T
0
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�
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i
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where R0 and R
T
0
are the restriction and interpolation operators from the �ne to coarse

meshes, respectively.

3. NUMERICAL EXPERIMENTS

In this section we report on a Navier-Stokes simulation of 
ow through a river bend.

The purpose of this test was to investigate the performance of the preconditioners near

steady state. Riprap refers to a foundation or wall of stones or similar material used

on riverbanks to prevent erosion. The \riprap" problems were designed to aid in the

placement and size determination of riprap material along natural rivers and channels.

The models only incorporate a short section of the test facility, and this short section

does contain a river bend.

The riprap model has a trapezoidal cross-section, and riprap material is placed along

the sidewalls. The 
ow in the cross-sectional area of the bend is in the form of a spiral,

and the net 
ow from side to side in the cross-section is to the outside of the bend at the

surface of the water and to the inside of the bend close to the bottom. There is more

sediment at the bottom of the river bend than at the top, so normally the outside bend

is eroded while a bar is developed on the inside of the bend. These riprap model results

are being used to evaluate three-dimensional models of the river bend.

The equations were discretized on unstructured tetrehedral meshes in three space di-

mensions. We used the piecewise constant in time and piecewise linear in space �nite

element discretizations from [1]. These discretizations are implicit in time and therefore
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a discretized nonlinear elliptic problem must be solved at each time step. The Galerkin

least squares methods of [6], [8], [9], and [12] were used to stabilize the discretization.

The meshes were generated using GMS [2]. Initially a straight channel with a trape-

zoidal cross-section was generated using the GMS tool. GMS created an element connec-

tion table, which was then used to move to nodes and construct the bend. The mesh is

shown in Figure 1.

Figure 1. Riprap Mesh
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After the grid was generated, the nodes were renumbered. The numbering of the nodes

plays an important role in the performance of the preconditioner because of the way

node allocation is currently done. At the present time, the nodes are divided among

processors sequentially; i.e., the �rst n nodes go to processor 0, the next n to processor

1, and so forth. The number of subdomains per processor is an input parameter to the

code. Once the nodes have a processor assignment, they receive a subdomain assignment.

This assignment occurs in the same sequential fashion as the processor assignment. The

coarse grid elements are de�ned on each processor, so the nodes that are assigned to

that processor should be as physically close to one another as possible. The renumbering

algorithm numbers the nodes in the vertical direction in the innermost loop, in the lateral

direction in the �rst outer loop, and longitudinally in the �nal outer loop. This ensures

that the numbering occurs across an entire cross-section before moving to the next cross-

section, and it also ensures that the numbering is done with respect to the aspect ratios

present in the mesh.

The nonlinear solver terminates when

kF (u)k
1
< 10�5 (4)

and the criterion for termination of the linear solver is

kF
0 (u) s+ F (u)k

1
< 10�7: (5)

The initial conditions were near steady state. Four time steps were taken for the smaller

of the two meshes and sixteen time steps were taken for the larger mesh. The smaller

mesh had 5881 nodes and 30720 elements and the larger mesh had 43889 nodes and

245760 elements. In this way the mesh width was roughly halved. For a regular grid, the
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condition number of the linearized problem is 1+O(�t=h2), where �t is the time step and

h the spatial mesh width and the accuracy is O(�t+ h
2). Motivated by these estimates,

we reduced the time step was reduced by a factor of four for the larger problem, keeping

the condition number roughly constant and increasing the temporal accuracy along with

the spatial accuracy.

In Table 1 we report iteration counts for the small problem on 8 processors with 8

subdomains per processor, the larger problem on 64 processors and 4 subdomains per

processor with the time step reduced by a factor of 4. The reduction in the number of

subdomains per processor for the larger problem was necessary because the communica-

tion costs of assembling the coarse mesh problem with 8 subdomains per processor was too

high. For the coarse mesh problem, using 8 subdomains per processor gave the lowest exe-

cution time because the subdomain factorization cost dominated that for communication

of coarse mesh data.

The iteration counts provided in Table 1 are the total number of linear iterations used

during the simulation. The timings are given in seconds and are the timings for the

entire simulation, including the initialization, calculation of the Jacobian, the construction

and application of the preconditioners, and the nonlinear solves. We have measured

performance in this manner because we are not solely interested in the performance of

the preconditioner, but its impact on the entire application. We compare Jacobi and

two-level Schwarz iterations. One-level Schwarz did not perform as well as Jacobi in our

experiments.

For the runs labeled Schwarz, the coarse grid was computed, factored, and stored once

for every 10 nonlinear iterations. This means the coarse grid was computed and factored

only once for the smaller problem and twice for the larger problem. This lag factor appears

to be much more important for the larger problems. We are in the process of determining

when lag factors are necessary and what the optimal lag factor is.

Table 1

Riprap Problem Iterations

Small Large

Jacobi Schwarz Jacobi Schwarz

Linear Iterations 12398 1467 16279 1397

Time (seconds) 1633 953 4807 2663

Linear Iterations/time step 3099 367 1017 87

All of the numerical results were calculated on an IBM SP2 located at the WES Major

Shared Resource Center. The SP2 has 255 processors, with an aggregate memory size

of 256 Gbytes. The operating system is the SP/135 AIX, Version 4.1.5.x, and the IBM

parallel operating environment (poe), Version 2.1.0.24, is used for batch processing. The

compiler is C for AIX with message passing, Version 3.1.4.
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4. CONCLUSIONS

While the preconditioners were originally designed for use on groundwater problems,

they perform well for Navier-Stokes simulations. Our use of a coarse mesh problem reduces

the number of iterations, while lagging the coarse problem maintains the reduction in

iteration counts while simultaneously reducing the execution time for the simulation.

Our formulation of the coarse mesh with aggregate elements led to an easy construction

of the coarse-mesh problem and trivial intergrid transfers.

The performance will be improved in our future work by lagging the �ne-mesh subdo-

main factorizations, using more e�cient subdomain solvers or incomplete factorizations,

and updating preconditioning information adaptively based on the behavior of the solu-

tion. We observed that the number of subdomains per processor has a signi�cant e�ect on

the performance of the preconditioner and optimization of this as a function of problem

size and computer architecture is an open problem.
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